
TALLINNA TEHNIKAÜLIKOOL
Arvutitehnika instituut

Töö kood: IAY40LT

Klassifitseeriv närvivõrk
programmeerimiskeeles Java

Bakalaureusetöö

Üliõpilane: Filipp Keks

Tudengi kood: 030725 IASB

Juhendaja: Peeter Ellervee

Tallinn
2006

TALLINN UNIVERSITY OF TECHNOLOGY
Department of computer engineering

Thesis code: IAY40LT

Classifying neural network in Java
programming language

Bachelor
thesis

Student: Filipp Keks

Student code: 030725 IASB

Tutor: Peeter Ellervee

Tallinn
2006

Bachelor’s thesis

Author's Declaration

I hereby declare that I am the sole author of this thesis. All ideas, important opinions or

data coming from any other sources and other authors are referenced.

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite tööd,

olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud.

Filipp Keks

- 3 -

Bachelor’s thesis

Abstract

Artificial neural networking as an effective image classification algorithm is described in

this thesis. Algorithm is presented in real example of optical character recognition (OCR)

program which is implemented in Java programming language. Besides classification

algorithm this thesis includes descriptions of all problems that occur in the process of

development of real working OCR system. Each problem description includes one or

several solutions as well as their substantiations and working implementations. Among

others the reviewed topics include: image preprocessing, invariant feature extraction,

character identification, network training and character database generation.

The work that was done during writing of this thesis, that is OCR program itself, is

released as an open-source project and its source code is freely available for everybody at

the following URL: http://ocr4j.sourceforge.net

- 4 -

http://ocr4j.sourceforge.net/

Bachelor’s thesis

Kokkuvõte

Tehisnärvivõrk on üks moodustest modelleerimaks bioloogilist aju. Sellise võrgu teooria

baseerub eeldusel, et arvutis on võimalik esitada bioloogilise neuroni peamisi omadusi.

Eesmärgiks on saavutada inimajuga võrreldavad arvutuslikud võimalused. Vaatamata

sellele, et tehisnärvivõrk on väga lihtsustatud koopia reaalsest bioloogilisest prototüübist,

võib seda efektiivselt kasutada aladel, kus inimestel on eelis masinate ees, näiteks

kujundituvastuses.

Klassifitseeriv närvivõrk on võrgu tüüp mille ülesandeks on mustrite tuvastamine.

Sellised võrgud on väga levinud nii sõjanduses kui ka tsiviilelus. Üks populaarne

klassifitseeriva võrgu kasutusala on optiline sümbolite tuvastus (OST). OST programmid

aitavad teisendada trükitud või käsitsi kirjutatud teksti masinloetavaks koodiks, mis lubab

teksti sisu muutmist ja edasist kasutamist.

Käesolevas töös on kirjeldatud tehisnärvivõrku efektiivse klassifitseeriva algoritmina.

Algoritmide abil on realiseeritud OST programmi, kirjutatud programmeerimiskeeles

Java. Lisaks klassifitseerimisalgoritmile on selles töös kirjeldatud ka probleeme, mis

tekkivad OST süsteemi arendamisel. Iga probleemi kirjeldus sisaldab ühte või mitut

lahendust koos põhjenduste ja realisatsiooniga. Täiendavate teemadena on kirjeldatud

pildi eeltöötlust, sõltumatute erisuste eraldamist, tähtede identifitseerimist, närvivõrgu

õpetamist ja sümbolite andmebaasi loomine.

Kõik kirjeldatud algoritmid on täielikult realiseeritud ja neid on kontrollitud praktilises

töös. Samuti on analüüsitud algoritmide efektiivsust. Töö sisaldab mõningaid Java

lähtekoodi lõike koos seletustega.

Kirjeldatud algoritmide realisatsioonid on avalikustatud SourceForge projektina ja on

leitavad veebilehelt http://ocr4j.sourceforge.net.

- 5 -

http://ocr4j.sourceforge.net/

Bachelor’s thesis

Table of Contents

• Illustration Index..8

• Terminology..9

• 1.Introduction...10

• 2.OCR system...12

• 3.Image preprocessing...13

Adaptive threshold..13

• 4.Clusterization..15

Rough assumptions...15

Finding character boundaries..15

Finding correct character order...16

• 5.Feature extraction...19

Implicit feature extraction...19

Explicit feature extraction...20

Algorithms...20

Quality measurement of feature extraction algorithms..24

• 6.Classification..28

Statistical pattern classification...28

Artificial neural network pattern classification...28

• 7.Character database...38

• 8.Implementation...39

Usage...39

Storage...40

UML diagrams..40

IDE...44

Source code...45

• 9.Results..47

- 6 -

Bachelor’s thesis

• 10.Bibliography..48

- 7 -

Bachelor’s thesis

Illustration Index

Figure 1: Adaptive thresholding algorithm examples...13

Figure 2: Flood-fill algorithm listing...16

Figure 3: Clusterization example...17

Figure 4: Clusterization example...17

Figure 5: Space detection algorithm listing ..18

Figure 6: Region density..21

Figure 7: Receptors optimization...22

Figure 8: Local contour direction..23

Figure 9: Contour direction feature plot..24

Figure 10: Feature extraction quality measurement algorithm ..26

Figure 11: Feed-forward neural network...29

Figure 12: Artificial neuron...29

Figure 13: Java implementation of neuron..31

Figure 14: Java implementation of back-propagation learning neuron...............................34

Figure 15: Graphical presentation of the sigmoid function...35

Figure 16: Learning process of the network based on the sigmoid function......................35

Figure 17: Learning process of the network based on the bipolar sigmoid function..........36

Figure 18: Graphical presentation of the hyperbolic tangent function................................37

Figure 19: Learning process of the network based on the hyperbolic tangent function.....37

Figure 20: Character database example...38

Figure 21: Neural network creation and character recognition sequence diagram.............41

Figure 22: Neural network class diagram..42

Figure 23: Feature extraction class diagram..42

Figure 24: Activation function class diagram..43

Figure 25: Network teacher class diagram..43

Figure 26: OCR class diagram...44

Figure 27: Eclipse in action...45

Figure 28: Project website look...46

- 8 -

Bachelor’s thesis Terminology

Terminology

OCR Optical Character Recognition

ANN Artificial Neural Network

Character A symbol, this term includes only the meaning of the symbol, not the
representation

Glyph A visual representation of the character (Optimized to be simple for
human)

ASCII American Standard Code for Information Interchange. One of the
computer-optimized character representations.

NIST National Institute of Standards and Technology

- 9 -

Bachelor’s thesis Introduction

1.Introduction

Artificial neural network (ANN) is an attempt to simulate the biological brain. Neural

network theory revolves around the idea that certain key properties of biological neurons

can be extracted and applied to simulations. The idea is to reach the computing potential

of the human brain. Artificial neural networks are even used as a way to study the human

mind [1]. Though ANN is a very much simplified model of its biological prototype, it can

be successfully used in the domain of tasks, where human has an advantage over

machines, like for example image recognition.

Classifying neural networks is the type of networks which aim is to identify patterns. The

domain on usage of these networks is very wide, for example in military technology these

networks are used for automatic identification of weapons and equipment like tanks and

airplanes, in civil domain they are helping police to recognize human faces, and in

everyday life classifying neural networks are used for optical character recognition

(OCR).

Optical character recognition programs help to read the printed or handwritten text from

images of scanned documents and books. Programs convert text from pictures into a

machine code understandable by the computer, so that content can be modified and

reused. This thesis describes the process of development of real working OCR system

based on the classifying neural network. Different approaches, algorithms and problem

solutions are studied. All theoretically substantiated aspects are implemented and proven

on practice. Together with OCR program itself, neural network training tools are created

as well as sample character database and demo applications. The created program is very

portable, it can be used on any platform which have a Java virtual machine

implementation, these platforms include Linux, BSD, Solaris, MAC, Windows and many

others.

Given thesis is structured such that parts of the recognition process are described in order

of their application. One or several solutions are provided for each recognition step, Java

implementations of some solutions are provided with descriptions. System

- 10 -

Bachelor’s thesis Introduction

implementation structure and achieved results description can be found in the end.

- 11 -

Bachelor’s thesis OCR system

2.OCR system

Optical character recognition system usually consists of separate modules which carry

out the different parts of recognition process.

● Preprocessing. A paper document is scanned to produce a gray scale or colored

image. In the first stage the raw scanned picture is filtered to remove colors and

convert it to binary image. Preprocessing module is responsible for removing

noise and locating text areas.

● Clusterization module finds the individual characters in the image and

computes the correct character order in the text.

● Feature extraction. The goal of this module is to extract the unique features of

the individual character so it can be recognized by the classification module. If

we compare OCR system with a human, we can say that this module plays the

role of the human eye.

● Classification. In the last stage OCR system tries to guess the character using the

information about character features extracted in the previous stage. Although it

can be done statistically which involves consistent comparison of characters from

database, it was chosen to try how neural network approach performs for this

task.

- 12 -

Bachelor’s thesis Image preprocessing

3.Image preprocessing

The complexity of image processing algorithms are beyond the topic of this thesis, it will

neither be reviewed in much detail nor researched throughly. The main aim of the

preprocessing is to divide color spectrum of the image into background and foreground.

Adaptive threshold

One of the approaches that can be used to detach background and foreground colors is

called adaptive (or dynamic) threshold. Thresholding used to segment image by setting

the pixels that have intensity value above the threshold to foreground value and those

whose value is under threshold to background.

There are two different types of thresholding algorithms. The global thresholding

approach uses a single threshold value computed for the whole image, this may work in

most cases when the image is equally light in all its regions, but in our case images are

not always so ideal. Another approach is local thresholding: the image is divided into

smaller overlapping parts and threshold value is computed for each part independently

adapting the local histogram. This technique allows us to segment characters in the image

regardless of lightening.

- 13 -

Original image

Global thresholding

Local thresholding

Figure 1: Adaptive thresholding algorithm examples

Bachelor’s thesis Image preprocessing

As we can see in the Figure 1, image with gradient background is segmented incorrectly

by the global thresholding algorithm, though local segmentation works well for the same

image.

- 14 -

Bachelor’s thesis Clusterization

4.Clusterization

After defining the foreground and background areas of the image we need to identify

separate glyphs. This part is implemented by the Java class ee.ttu.ocr.ImageClusterer.

I made some rough assumptions to simplify this part of the recognition process.

Rough assumptions

1. Each character is fully in one solid peace without any additional excrescences.

Which is not fair for “i” and “j” Latin lowercase characters. This assumption

allows us to identify capital letters only.

2. Characters are not intersected, there is always a clear space between separate

characters. This is not true for low quality scans. There are some algorithms

allowing to guess the unclear character sequence using the knowledge about

common language specific features, but the complexity of this work would grow

too dramatically if I try to implement any of these.

3. No random noise exists in the picture. Any peace of foreground color in the

picture assumed to be a character glyph.

Finding character boundaries

To find the character shape I used a simple flood fill algorithm, that is commonly used for

“bucket” fill tool in paint programs to determine which parts of bitmap to fill with color.

The idea is to find at lest one pixel of the glyph and then fill it with some predefined

color. We are able to find the character boundaries in filling process and cut the glyph

from the image so that it can be later processed by the feature extractor as a single

character bitmap.

Flood-fill algorithm requires 3 input parameters: target color, replacement color and start

point. As preprocessing stage guarantees that picture contains only 2 colors: background

- 15 -

Bachelor’s thesis Clusterization

and foreground, color choice is quite simple for us. Foreground color of the picture is a

target color for flood-fill algorithm. Replacement color is not important, but it should be

different from foreground and background.

Algorithm is quite simple. The first step is to find the leftmost and the rightmost pixel

filled with target color in the start point horizontal line. Then we paint the line with the

replacement color simultaneously adding the pixels above and under the line to the

queue. We repeat the same procedure for each point in the queue and continue doing this

until the queue is empty.

As you may see in Listing 2 method floodFill requires any point of the glyph as an input

parameter and returns the its boundaries which can be used to cut the glyph from the

image.

Finding correct character order

To use the flood-fill algorithm first we need to find at lest one point for each character in

the image and compute the order of the characters in the text.

- 16 -

// From ImageClusterer.java
private ClusterBoundaries floodFill(Point startPoint) {
 ClusterBoundaries boundaries = new ClusterBoundaries();
 queue.offer(startPoint);
 Point point;
 do {
 point = queue.poll();
 if (point==null || !isPointSet(point.getX(), point.getY())) {
 continue;
 }
 int y = point.getY();
 boundaries.setTop(y);boundaries.setBottom(y);
 int w,e;
 // Find western and eastern points of the line
 for (w = point.getX(); isPointSet(w-1,y); w--);
 for (e = point.getX(); isPointSet(e+1,y); e++);
 boundaries.setLeft(w);boundaries.setRight(e);
 // Fill the line and add above and under points to the queue
 for (int x = w; x <= e; x++) {
 unsetPoint(x,y);
 if (isPointSet(x,y-1))
 queue.offer(new Point(x,y-1));
 if (isPointSet(x,y+1))
 queue.offer(new Point(x,y+1));
 }
 } while(point!=null);
 return boundaries;
}

Figure 2: Flood-fill algorithm listing

Bachelor’s thesis Clusterization

We can find characters by simply scanning the image. The only problem is to determine

the right scanning direction that would guarantee the correct order of the characters. For

example if we scan image, presented in Figure 3 vertically from top to the bottom, the

first character that we will find will be “L”, and instead of the word “HELLO” we will get

something like “LHOLE”. If we try to scan image horizontally from left to right, the first

letter will be “C”.

I found a solution by scanning image in the diagonal direction. In Figure 4 you may see

an example of the scan process. The diagonal scan started from the upper-left corner and

when the first character is found, scan is continued horizontally. When horizontal scan

reached the right border of the image this assumed to be a line break. The diagonal scan is

repeated to find the next line.

Detecting spaces

Another problem is spaces between characters. I used some kind of self adapting word

break detection algorithm. The average width of single character is computed constantly,

if the space between characters is bigger than half of average character width then it

- 17 -

Figure 3: Clusterization example

Figure 4: Clusterization example

Bachelor’s thesis Clusterization

assumed to be a word break. But sometimes characters of different sizes are used in one

text, much bigger font is used for headings or emphasized text, so I made the average

character width to be reseted if size of a character is changed rapidly. See the Figure 5 for

the implementation.

- 18 -

// From ImageClusterer.java
private boolean isSpace(ClusterBoundaries boundaries1,
 ClusterBoundaries boundaries2) {
 if (boundaries1.getWidth() > averageClusterWidth*2 ||
 boundaries1.getWidth()*2 < averageClusterWidth) {
 averageClusterWidth = boundaries1.getWidth();
 numberOfFoundClusters=1;
 }

else {
 averageClusterWidth = (float)(averageClusterWidth * numberOfFoundClusters +
 boundaries1.getWidth()) / (numberOfFoundClusters+1);
 numberOfFoundClusters++;
 }
 return boundaries2.getLeft()-boundaries1.getRight() >
 averageClusterWidth/2;
}

Figure 5: Space detection algorithm listing

Bachelor’s thesis Feature extraction

5.Feature extraction

Feature extraction module converts the image into a sequence of numbers which is then

processed by the classification module. The main requirement for the feature extraction

algorithm is invariantion to image distortion and different types of writing. There are two

different approaches for combining a classifying artificial neural network with feature

extraction.

Implicit feature extraction

One approach is called implicit feature extraction. The simple feature extraction

algorithm is combined with complex ANN. Features are extracted implicitly inside the

neural network.

Advantages

1. Easy to implement. No need to invent and support a complex algorithms for

feature extraction, the work is done by the neural network.

2. Flexibility. If we find that network is unable to read some type of text in the

image, we can just add it to the training data and restart the learning

process, instead of reimplementing the complex algorithm.

Disadvantages

1. Requires a lot of training material for ANN. To make the network

understand the glyph distortion invariants we need a complex training data

which represents all possible distortions and different writing properties.

2. Requires a complicated ANN structure with great number of neurons and

layers.

3. The quality of the work of OCR system can not be proven mathematically.

- 19 -

Bachelor’s thesis Feature extraction

We can judge the quality only by the system work results.

Explicit feature extraction

Second approach is called explicit feature extraction. In this approach the features of

character glyph are extracted by the concrete explicitly defined algorithm.

Advantages

1. This approach is not tied to classifying ANN. Any kind of classification

algorithm may be used with explicit feature extractor. For example it may

be a statistically comparing nearest-neighbor classifier.

2. Requires simpler ANN as a classifier, which is easier to teach with smaller

training data.

3. It is possible to find the exact reason of the failure by debugging the

algorithm.

Disadvantages

1. It is quite hard to found and implement the algorithm which can equally

represent the same character glyph independently from font or handwriting

specific properties.

Because of the difficulty of achievement of the representation invariance property of

feature extraction method by any kind of analytic and theoretical means it is often pursued

heuristics and more or less intuitive procedures.

Algorithms

I choose to use some kind of mix of both feature extraction approaches, mentioned above.

My idea is to explicitly use the feature extraction algorithm, which is able to partly reduce

the differences between fonts and handwritings. This allows me to fill up the lack of

- 20 -

Bachelor’s thesis Feature extraction

training data.

Image region density

The first idea that comes to mind is to use pixel values as a receptors of the artificial eye.

To make the number of receptors constant we can break the image into a number of

rectangle regions and calculate the average color density of pixels in each region. The

implementation of this algorithm can be found in class

ee.ttu.ocr.SquareRegionDensityEye.

This algorithm is easy to implement, but it is very ineffective when used as explicit

feature extraction method. Density of regions is not resistant to glyph distortion. Another

disadvantage of this method is that number of receptors is too large. Most receptors

represent the background and does not contain any information about the character glyph.

Though this algorithm is often used with implicit feature extraction approach.

Random line receptors

Algorithm is based on the conception presented in the project of Andrew Kirillov [2]. This

is a some kind of attempt to reduce the disadvantages of the previously described region

density extractor. The main idea is the same: calculate average density of some regions,

but in this case region shapes and positions should be optimal for the specific set of

characters and their image representations. The optimal set of receptors is defined only

once, so it can be done manually, but in this work the automatic algorithm is used. Its

implementation can be found in Java class ee.ttu.ocr.RandomReceptorEye.

To simplify the implementation line shaped receptors were used. The most complex

- 21 -

Figure 6: Region density

Bachelor’s thesis Feature extraction

calculations are done before start of training process. Precalculation steps are:

1. Generate a number of random lines and make sure that they are not coincide with

each other.

2. Calculate the quality of each line receptor. See page 24 for quality calculation

algorithm description.

3. Throw away receptors with poorest quality.

In Figure 7 you may see an example of receptors optimization. The initial state of feature

extractor is on the left picture – 1000 receptors are generated randomly. Usability of each

receptor is calculated for alphabet that contains letters 'A', 'S', 'D', 'F', 'G' and 'H', with 4

different glyph variants for each letter. On the right picture only 200 receptors with best

usability values are left, as you may see receptors some kind of follow the shapes of

glyphs.

Image region contour direction

Algorithm is based on the work of Carlos Perez and Enrique Vidal [3]. This is also a kind

of image region density (See page 21) method extension. Same as in named method we

divide the image into number of static regions, rectangles for example. But instead of

calculating average density of the region color we calculate the average direction of lines

inside the region. This algorithm is implemented by

ee.ttu.ocr.LocalContourDirectionEye class.

- 22 -

Figure 7: Receptors optimization

Bachelor’s thesis Feature extraction

As we can see from Figure 8, some regions may be totally blank, this means that they

don't have a contour direction, and others can have only one tiny pixel inside them. To

avoid the rapid change of receptions indications with small changes of glyph shape we

can combine contour direction with region density.

Another problem of this method is angle representation. Representation of value is usable

when it is unique and continuous. This means that sensor value should change smoothly

with small changes of direction angle and each sensor value should represent only one

unique angle value. If we use a sine or cosine representations of the angle we loose

uniqueness, absolutely different angles can be represented by one cosine value

cos /2=cos −/ 2 . Angle representation arctan k lacks continuousness,

nearly vertical lines can have a very different representations, like 0.1 and −0.1

radians.

This pair of expressions meets the above mentioned requirements.

f 1=sin 2⋅arctan k =
2k

1k 2 f 2=cos 2⋅arctan k =
1−k 2

1k 2

f 1 first direction feature

f 2 second direction feature

k straight line angle coefficient y=k⋅xa

- 23 -

Figure 8: Local contour direction

Bachelor’s thesis Feature extraction

Both features are continuous, their graphs tend to the same value at the both sides of

infinity.

First feature: lim k∞ f 1=limk∞

2k

1k 2=0 lim k−∞ f 1=limk −∞

2k

1k 2=0

Second feature: lim k∞ f 2=limk ∞

1−k 2

1k 2=−1 lim k−∞ f 2=lim k−∞

1−k 2

1k 2=−1

The combination of these two parameters is unique for every k .

In combination with density we have 3 receptors per region. Unlike region density feature

extractor, which receptors number equals number of image regions, this eye have 3 times

more receptors.

Quality measurement of feature extraction algorithms

This quality measurement algorithm is used for optimization in random line feature

extractor (page 21) and for impartial efficiency comparison of different feature extractors.

It is implemented by ee.ttu.ocr.teaching.EyeQualityInspector Java class.

Usability of extracted features can be measured by two main properties: feature should be

common for all glyph variants of one character and vise-versa it's value should be

- 24 -

Figure 9: Contour direction feature plot

-1
0

-9
.5

-9 -8
.5

-8 -7
.5

-7 -6
.5

-6 -5
.5

-5 -4
.5

-4 -3
.5

-3 -2
.5

-2 -1
.5

-1 -0
.5

0 0.
5

1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

10

-1.0000

-0.9000

-0.8000

-0.7000

-0.6000

-0.5000

-0.4000

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

feature1

feature2

Bachelor’s thesis Feature extraction

different for various characters. To measure these properties we can use entropy.

=eo⋅1−ei

 relative quality coefficient

eo outer entropy is calculated on values which receptor receives on different
characters of alphabet.

ei inner entropy is calculated on values which receptor receives on different glyphs
of the same character.

Of course we have a number of inner and outer entropies for a single receptor, so we use

an average value.

Entropies are calculated using the correlative entropy calculation method.

e=−ln
∑
i , j

n

1∣a i−a j∣−

nn−1

e correlative entropy

a1, a2 ...an values of the studied parameter

1 Heaviside function

n number of studied values

 coefficient that depends on number of values their sparseness, it should be
somewhere near the average distance between values

Correlative entropy is an entropy estimation, it aspires to the real entropy with infinite

number of parameter values.
E=lim

n∞
0

e

See Figure 10 for Java implementation of algorithm described above.

// From EyeQualityInspector.java
/**
 * Measure a relative usability of the eye for recognizing the given course
 * Usability measurement algorithm is based on entropy of eye receptor values.
 *
 * @param eye
 * @param course
 * @return array of receptor usabilities
 * @throws OCRTeachingException

- 25 -

Bachelor’s thesis Feature extraction

 */
public static float[] getEyeReceptorUsabilities(Eye eye, OCRTeachingCourse course)
 throws OCRTeachingException {
 Map<Character, List<float[]>> eyeReceptorValues = getEyeReceptorValues(eye, course);
 float[] result = new float[eye.getReceptorsCount()];
 for(int receptorIndex = 0; receptorIndex < eye.getReceptorsCount(); receptorIndex++) {
 float avgInnerEntropy = getReceptorInnerEntropy(eyeReceptorValues, receptorIndex);
 float avgOuterEntropy = getReceptorOuterEntropy(eyeReceptorValues, receptorIndex);
 result[receptorIndex] = avgOuterEntropy * (1-avgInnerEntropy);
 }
 return result;
}

private static float getReceptorOuterEntropy(Map<Character, List<float[]>> eyeReceptorValues,
 int receptorIndex) {
 float sumOuterEntropy = 0;
 for (int i=0; i< characterImagesCount; i++) {
 float[] values = new float[eyeReceptorValues.size()];
 int j=0;
 for (Iterator<Character> it = eyeReceptorValues.keySet().iterator(); it.hasNext(); j++) {
 values[j] = eyeReceptorValues.get(it.next()).get(i)[receptorIndex];
 }
 sumOuterEntropy += MathEx.correlativeEntropy(0.2f, values);
 }
 return sumOuterEntropy/characterImagesCount;
}

private static float getReceptorInnerEntropy(Map<Character, List<float[]>> eyeReceptorValues,
 int receptorIndex) {
 characterImagesCount = 999;
 float sumInnerEntropy = 0;
 for (Character character : eyeReceptorValues.keySet()) {
 List<float[]> receptorValues = eyeReceptorValues.get(character);
 if (characterImagesCount > receptorValues.size()) {
 characterImagesCount = receptorValues.size();
 }
 float[] values = new float[receptorValues.size()];
 int i = 0;
 for (ListIterator<float[]> iterator = receptorValues.listIterator(); iterator.hasNext();
 i++) {
 values[i] = iterator.next()[receptorIndex];
 }
 sumInnerEntropy += MathEx.correlativeEntropy(0.2f, values);
 }
 return sumInnerEntropy/eyeReceptorValues.size();
}

// From MathEx.java
/**
 * Calculate the entropy of the array values using correlative integral
 * @param distance
 * @param values
 * @return correlative entropy
 */
public static float correlativeEntropy(float distance, float[] values) {
 int result = 0;
 for (int i=0; i<values.length; i++) {
 for (int j=i+1; j<values.length; j++) {
 if (java.lang.Math.abs(values[i]-values[j]) < distance) {
 result++;
 }
 }
 }
 return (float)-Math.log(2*(float)result/(values.length*(values.length-1)));
}

Quality of implemented algorithms

Usability of 3 different feature extraction algorithms were measured for character

- 26 -

Figure 10: Feature extraction quality measurement algorithm

Bachelor’s thesis Feature extraction

database containing 520 images (See page 38). Algorithms were inspected with different

initialization parameters. The best results of each algorithm are in the table below.

Algorithm Optimal parameters Quality coefficient

Random receptors Initial receptors count: 500
Minimal quality coefficient: 0.4
Number of receptors: 132

0.455

Region density Grid width: 2
Grid height: 9
Region overlapping: -10%
Number of receptors: 18

0.369

Region contour direction Grid width: 3
Grid height: 9
Region overlapping: -15%
Number of receptors: 81

0.251

It came out that Random receptor feature extractor is best according to the used quality

measurement algorithm. It is not surprising because it was optimized by the same

algorithm. Theoretically the quality of this extractor can by set to any number by

adjusting the initial parameters, but it may be dangerous because in case of large minimal

quality coefficient parameter algorithm may choose to recognize only parts of the image

which are easiest to recognize. In other words it will be an image data loss.

The surprising thing is that a dummy region density algorithm shows better results than its

extended version. Another surprising thing is that positive overlapping parameters made

quality coefficient to fall down, but negative values of this parameter vise-versa make the

result better.

Practical tests show about the same results (See page 47), so the quality measurement

results can be considered to be adequate.

Limitations

Described quality measurement algorithm may show an inadequate results. The algorithm

takes into account only individual receptors, not being aware of what number of receptors

is required for good recognition and how the image area is covered by receptors.

- 27 -

Bachelor’s thesis Classification

6.Classification

In classification step the sequence of numbers, returned by feature extractor is converted

to computer interpretation of concrete character, for example ASCII code.

Statistical pattern classification

One of the approaches of pattern classification is to use statistical comparison between

input data and data from database. Nowadays this approach is used more rarely than

artificial neural networks, however, there is no conclusive evidence about superiority of

one over another [4].

Statistical approach is not a part of the given thesis.

Artificial neural network pattern classification

Artificial neural network is an attempt to simulate a human brain. The idea is to create a

number of simple and independent data processing items, called neurons, and connect

them to each other so that they become a complex network. Same as a human brain ANN

is able to learn. In learning process each item adjusts its internal state independently

according to some defined law. The first connectionism hypothesis that later formed the

ANN technology was proposed by Friedrich Hayek in 1952 [5].

There are a lot of different ANN types. At first neural networks are classified by the type

of neuron connections. The network type, which is used in this thesis, is called feed-

forward, in this type of networks the output of any neuron never returned to this neuron

directly or through any number of other neurons. Another type is called recurrent or

feedback neuron network, in this type of network neurons can be connected anyhow.

Feed-forward neural network

Feed-forward neural network usually consists of several layers: one input layer, one

output and a number of internal layers. Often input layer contains the biggest number of

- 28 -

Bachelor’s thesis Classification

neurons and output layer the least. Input layer collects the input data and passes it via

nodes to the first internal layer, first input layer passes it to the second and so on until data

reaches the output.

Neuron

x j Neuron internal value

y j Neuron output

w ij Node weight

- 29 -

Figure 11: Feed-forward neural network

in
pu

t
va

lu
es

ou
tp

ut
 v

al
ue

s

input layer

output layer

internal layer

neurons nodes

Figure 12: Artificial neuron

S activation
function

w
1j

w
2j

w
3j

y
1

y
2

y
3

x
j

y
j

Bachelor’s thesis Classification

A simple data processing item – neuron consists of two parts. First part collects data from

the input neurons and calculates the neuron internal value.

x j=∑
i

y i⋅wij

Second part is an activation function, which processes the internal value of the neuron and

forms output.

y j= f x j

See page 34 for detailed description of different activation functions.

While passing through node from one neuron to another, signal is distorted by it's weight.

The input values, which are received by neurons of the next layer from one neuron are the

output value of this neuron multiplied by node weight.

public class Neuron implements Serializable {
protected Float cachedOutput;

protected ArrayList<Node> inputNodes;
protected ActivationFunction activationFunction;

public Neuron(ActivationFunction activationFunction) {
this.activationFunction = activationFunction;

}

/**
 * Get output of the neuron.
 * If the internal value is not yet set, this method activates the whole network
 * recursively
 * to get the internal value.
 * @return neuron value
 */
public float getOutput() {

if (cachedOutput == null) {
float value = 0;

 for (Node inputNode : inputNodes) {
 value += inputNode.getOutput();
 }

cachedOutput = activationFunction.calculate(value);
}
return cachedOutput;

}

/**
 * Sets the internal value of the neuron. This should be used only for input neurons.
 * @param value
 */
public void set(Float value) {

cachedOutput = activationFunction.calculate(value);
}

public void addInput(Neuron neuron) {
if (inputNodes == null)

inputNodes = new ArrayList<Node>();
inputNodes.add(new Node(neuron));

}

- 30 -

Bachelor’s thesis Classification

public void clear() {
cachedOutput = null;

}

public void randomizeInputNodes() {
 for (Node node : inputNodes) {
 node.randomize();
 }

}

public class Node implements Serializable {
private Neuron inputNeuron;
protected float weight;

public Node(Neuron inputNeuron) {
this.inputNeuron = inputNeuron;
randomize();

}

public float getWeight() {
return weight;

}

public Neuron getInputNeuron() {
return inputNeuron;

}

public float getOutput() {
return inputNeuron.getOutput()*weight;

}

public void randomize() {
weight = Random.next();

}
}

}

Learning

There are two main approaches of ANN training: Supervised and Unsupervised training.

In Supervised training network is provided with both input and output data. Network then

processes inputs and compares results with outputs trying to be very close to desired

output data.

In Unsupervised learning network is only provided with input data. Network tries to adapt

the changing input without knowing the required result.

In this work Supervised training approach is used. Artificial neural network learning

process is practically a process of node weight adjustment. Weights are adjusted according

to learning patterns. Learning patterns is a pair of data sequences – input sequence and a

desired output data sequence. Network output error is a difference between real output

- 31 -

Figure 13: Java implementation of neuron

Bachelor’s thesis Classification

and desired output pattern. The goal of learning process is minimizing the output error.

The overall error of the network output can be calculated like this

E=
1
2 ∑i

 y i−d i
2

E overall network output error

y1, y2... yn real network outputs

d 1, d 2...d n desired network outputs

Genetic learning algorithm

One of the network learning approaches is adjusting node weights genetically. In each

learning iteration (generation) nodes are adjusted randomly. If output error is bigger then

in previous generation, new network is destroyed, otherwise it is used as a base on the

next generation. Process is repeated until output error reaches some acceptable level.

Despite the simplicity of this algorithm, it is very ineffective.

Back-propagation learning algorithm

Another approach, which is used in this work is called Back-propagation. It is first

described by Paul Werbos in 1974 [6]. The idea of this approach is to calculate the error of

output value of each neuron starting from output network layer and back propagating it to

the previous layer. So that each neuron may adjust its nodes based on the known self error

value. See ee.ttu.ann.BackPropagationLearningNetwork class for implementation.

The back-propagation algorithm consists of four steps

1. Compute the output errors of layer neurons

eoi=
 E
 yi

= y i−d i

- 32 -

Bachelor’s thesis Classification

2. Calculate the input errors

eii=
 E
 x i

=
 E
 y i

⋅
 x i

 x i

=eoi⋅f −1
 y i

where f −1
 is a derivative of the activation function

3. Calculate the node weights errors

ewij=
 E
wij

=
 E
 x i

⋅
 x i

wij

=ei i⋅y j

4. Compute the output errors of the previous layer

eo j=
 E
 y j

=∑
i

E
 x i

⋅
 x i

 y j

=∑
i

ei i⋅wij

Steps are repeated starting from step 2. for all layers until the input layer is reached.

Weight error values ewij are used to adjust the weights of the nodes.

public class BackPropagationLearningNeuron extends Neuron {

float errorOutput;

public BackPropagationLearningNeuron(ActivationFunction activationFunction) {
super(activationFunction);

}

/**
 * Backpropagate the error to the input neurons

 * and adjust the input node weights.

 * <p/>
 * This method should be called when error neuron value is completely set.
 */
public void learn() {
 if (inputNodes == null)

 return;
 for (Neuron.Node node : inputNodes) {
 BackPropagationLearningNeuron nodeInputNeuron = node.getInputNeuron();

 float errorInput = errorOutput*activationFunction.calculateDerivative(cachedOutput);
nodeInputNeuron.increaseError(errorInput*node.getWeight());
float errorWeight = errorInput*nodeInputNeuron.getOutput();
((Node)node).adjustWeight(errorWeight);

 }
 errorOutput = 0;
}

public void increaseError(float incError) {
errorOutput += incError;

}

public List<Neuron.Node> getInputNodes() {
return inputNodes;

- 33 -

Bachelor’s thesis Classification

}

public class Node extends Neuron.Node {
public Node(Neuron inputNeuron) {

super(inputNeuron);
}

public void adjustWeight(float errorWeight) {
weight -= errorWeight;

}
}

}

Activation functions

Activation function is used to compute the neuron output value. Properties of this function

directly influence the properties and behavior of the network: its learning ability,

complexity etc.

Theoretically any function can be used as an activation function, but there are ones that

are used more often mostly because of calculation convenience.

Sigmoid function

This function is very often used with back propagation learning algorithm.

f x =
1

1e− x

Derivative f −1
 y = y 1− y

Value range (0 : 1)

- 34 -

Figure 14: Java implementation of back-propagation learning neuron

Bachelor’s thesis Classification

In Figure 16 you may see how network error decreases in learning process. Sigmoid

function based network learning process is not very smooth, the error value jumps up and

down before reaching the required level very close to zero.

This function Java implementation is in ee.ttu.math.SigmoidFunction class.

Bipolar sigmoid function

This is a sigmoid function that is symmetric relatively to X axis. Implementation can be

found in ee.ttu.math.BipolarSigmoidFunction.

- 35 -

Figure 15: Graphical presentation of the sigmoid function
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

x

y

Figure 16: Learning process of the network based on the sigmoid
function

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

0.1100

0.1200

0.1300

0.1400

0.1500

0.1600

0.1700

0.1800

0.1900

0.2000

0.2100

0.2200

0.2300

0.2400

0.2500

0.2600

0.2700

2500 learning itrations

E

Bachelor’s thesis Classification

f x =
1

1e− x −
1
2

Derivative
f −1

 y = 1
4
− y2

Value range (-0.5 : 0.5)

Unlike with sigmoid function, bipolar sigmoid function based network decreases its error

almost perfectly smoothly (Figure 17) and with equal conditions it reaches the appropriate

error level about two times faster.

Hyperbolic tangent function

Implemented by ee.ttu.math.HyperbolicTangentFunction Java class.

f x =tanh x=
e x

−e− x

e x
e− x

Derivative f −1
 y = 1− y 2

Value range (-1 : 1)

- 36 -

Figure 17: Learning process of the network based on the bipolar
sigmoid function

0.0000

0.0250

0.0500

0.0750

0.1000

0.1250

0.1500

0.1750

0.2000

0.2250

0.2500

0.2750

0.3000

0.3250

0.3500

0.3750

0.4000

0.4250

0.4500

0.4750

0.5000

0.5250

0.5500

0.5750

0.6000

0.6250

0.6500

0.6750

0.7000

0.7250

1000 learning itrations

E

Bachelor’s thesis Classification

Network based on hyperbolic tangent function makes network to learn very fast, but at the

same time it makes the error value to change very rapidly in the learning process, what

makes the network somewhat unreliable: sometimes error value does not reach the

required level at all.

- 37 -

Figure 18: Graphical presentation of the hyperbolic tangent
function

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-1.0000

-0.9000

-0.8000

-0.7000

-0.6000

-0.5000

-0.4000

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

x

y

Figure 19: Learning process of the network based on the
hyperbolic tangent function

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

872 learning itrations

E

Bachelor’s thesis Character database

7.Character database

Character database is the data which is used to teach network to understand the characters.

Some institutions manage the databases of images of handwritten characters and sell the

to the companies which create a commercial OCR products. Like for example NIST [7]

character database contains over 800000 images and can be purchased from their website

for $90.

I've created my own character database. It contains only capital letters with 20 different

glyphs of each character, 8 of which are my own handwritings and 12 are generated by

computer. 520 images overall.

Figure 20: Character database example

I am going to release my character image set as an open database that may be used for

other open-source character recognition projects. The idea is to create a common format

and a good interface so that anybody could easily add their handwritings to the database.

Though it is still have to be done.

- 38 -

Bachelor’s thesis Implementation

8.Implementation

All algorithms described in this thesis are implemented in programming language Java

using object oriented approach. The implementation consists of 36 classes and 2179 lines

of code.

The structure of the OCR system is made so that all its parts are functioning

independently from each other, using a common interfaces to interact. This allows any

part to be painlessly replaced or changed without touching the rest of the system.

Usage

From users point of view system consists of two main tools: network training tool and

character recognition tool. To create a functional OCR user should follow 4 simple steps.

1. Create a character database. Database is just a set of image files in PNG format,

file names consist of the character which is represented by the image with “png”

extension. Like A.png, B.png, C.png etc. Each image file may contain any number

of character glyph variants.

2. Configure the network teaching tool. Set all the required parameters: number of

layers in the network, number of neurons in each layer, activation function,

network learning rate, feature extraction algorithm and its specific parameters.

3. Run the network training tool and wait for some time until the network error value

reaches the appropriate level. 10−5 - 10−10 seems to be an appropriate value.

This step may take a lot of time: up to several days, depending on the computer

power, network complexity and character database size. (If initial parameters are

not suitable, the error value may not reach the low values at all. If learning process

is stuck it is worth returning to the step 2 and for example increase number of

layers in the network) When training process is finished, the result is saved into a

file, which contains all information about feature extractor, neural network and

alphabet.

- 39 -

Bachelor’s thesis Implementation

4. Now the character recognition tool can be used to open the file which was saved

by training tool and reuse the stored information.

Any number of neural networks can be stored and loaded in the same program at the same

time, this allows to easily make recognition competitions among different algorithms.

Storage

The file format, used to store the training results is a Java specific object serialization

format. This format is very flexible and it is not specific to a file storage, objects can be

stored to a database or streamed through the network etc.

But this format has its disadvantages: stored objects can not be loaded if object classes

were changed, in other words neural network trained with one version of the library can

not be used by other versions.

UML diagrams

Sequence diagram

In Figure 24 is provided a sequence diagram of the network creation and character

recognition process. It represents steps 2-4 of the previous section of this thesis.

As user initializes the training process, OCRTeacher cycles through the characters

provided by OCRTeachingCourse and allows LearningNeuralNetwork to learn from

them. At the end of the training process, result is stored by OCRSerializer.

Recognition process starts with reading the saved parameters of neural network and the

Eye, after which same instances of LearningNeuralNetwork and Eye are used by OCR

to perform the recognition.

- 40 -

Bachelor’s thesis Implementation

Class diagrams

In this section are presented class diagrams which describe relations among main classes

of the project.

Figure 22 describes stricture of the neural network itself. The right part of the diagram is a

simple neural network which is unable to learn and can be only used for recognition. Main

interface NeuralNetwork is implemented by NeuralNetworkImpl class containing

Neuron objects inside it.

On the left side of the diagram presented classes which are responsible for network

learning ability. Main interface LearningNeuralNetwork extends NeuralNetwork and has

one implementation: BackPropagationLearningNeuralNetwork which is a realization of

ANN learning approach described in Classification section of the given thesis (see page

- 41 -

Figure 21: Neural network creation and character recognition sequence diagram

Bachelor’s thesis Implementation

28).

In Figure 23 is shown that we have 3 different realizations of feature extractor. The

common interface, called Eye, is implemented by SquareRegionDensityEye,

LocalContourDirectionEye and RandomReceptorEye. Descriptions of there

implementations can be found in Feature extraction section on the page 19.

Activation function implementations structure is described in Figure 24. Descriptions of

- 42 -

Figure 22: Neural network class diagram

Figure 23: Feature extraction class diagram

Bachelor’s thesis Implementation

these functions can be found on page 34.

Figure 25 describes the ANN teacher structure. then main class OCRTeacher operates

with LearningNeuralNetwork, Eye, OCRTeachingCourse and Statistics objects in the

neural educational process. OCRTeachingCourse is a container for character database and

it is responsible for generation of teaching patterns. Statistics is a simple callback interface

which is used by the program which initializes the teaching process, to receive some

progress information.

- 43 -

Figure 24: Activation function class diagram

Figure 25: Network teacher class diagram

Bachelor’s thesis Implementation

Last diagram (Figure 26) shows the character recognizer. Man class OCR contains one

simple method recognise() which takes the image object as a parameter and returns the

recognized text as a string. OCR class operates with Eye, NeuralNetwork (note that in

this case network has no learning ability because it is not required), ImageClusterer and

OCRSerializer. ImageClusterer is a realization of clusterization approach described on

page 15. OCRSerializer is a class responsible for storing and loading the neural network

from file, so ANN which was educated by OCRTeacher can be saved to file and reused

later.

IDE

Eclipse integrated development environment was used in this project. Eclipse is one of the

most popular Java development environments at the moment, it is free and open source.

Eclipse can be freely downloaded from it's official website [8].

- 44 -

Figure 26: OCR class diagram

Bachelor’s thesis Implementation

Figure 27: Eclipse in action

Source code

The source code of this project is freely available for anybody to download on the

SourceForge – a popular open-source software development portal [9]. Project is

registered under name ocr4j, which stands for Optical Character Recognition For Java.

License

Source code is released under LGPL (Lesser General Public License) open-source license.

Which means that anybody can use or modify my program freely and all additions and

modifications will be also available under LGPL license. My source code can not be a part

of any commercial product, but can be used in commercial products as a library without

modifications. More detailed description of LGPL license can be found on the GNU

official website [10].

- 45 -

Bachelor’s thesis Implementation

Website

The project has it's own website http://ocr4j.sourceforge.net/

Website contains a demo applet which allows visitors to draw characters and try how the

library works without downloading and compiling the source code.

- 46 -

Figure 28: Project website look

http://ocr4j.sourceforge.net/

Bachelor’s thesis Results

9.Results

I've tried different combinations of algorithms described in this thesis and the best

combination was Random receptor feature extraction algorithm with Bipolar sigmoid

activation function based neural network with 315 neurons divided into 4 layers. This

combination was the fastest learning and most accurate in image recognition.

Neural network training process took about 5 minutes on AMD Athlon 3800 processor.

The final error value was near to 10−8 . I've also performed some test to measure the

quality of character recognition:

Examination data Number of samples Mistakes Quality

Same data that was used in
network training process

520 0 100%

Handwritten characters that were
never seen by the network before

130 (5 variants for each letter) 18 86%

Printed characters of fonts, styles
and sizes that were not used in
training process

936 (36 images of each letter) 19 98%

The recognition quality is somewhat not bad, but it is still not on the industrial level.

Classifier makes mistakes sometimes even when image content is obvious for human eye.

The reasons for this are: very limited character database and algorithms limitations.

Other things which library still lacks:

● Current clusterization algorithm is not able to find characters that consist of

several separate parts like “i” or “j”.

● Ability to recognize handwritings with connected characters.

● Noise reduction.

● Neural network training speed optimization (Using for example the NOVEL

optimization method [11])

- 47 -

Bachelor’s thesis Results

10.Bibliography

[1] Artificial Intelligence Tutorial Review - Eyal Reinhold, Johnathan Nightingale

1999 http://www.psych.utoronto.ca/~reingold/courses/ai/

[2] Neural Network OCR - Andrew Kirillov 2005

http://www.codeproject.com/csharp/neural_network_ocr.asp

[3] Simple and Effective Feature Extraction for Optical Character Recognition - Juan-

Carlos Perez, Enrique Vidal

[4] Machine Learning, Neural and Statistical Classification - D. Michie, D.J.

Spiegelhalter, C.C. Taylore 1994 http://www.amsta.leeds.ac.uk/~charles/statlog/

[5] The Sensory Order - Friedrich Hayek 1952

[6] The Roots of Backpropagation - Paul Werbos 1974

[7] National Institute of Standards and Technology - http://www.nist.gov

[8] Eclipse IDE official website - http://www.eclipse.org

[9] SourceForge open-source software development portal - http://www.sourceforge.net

[10] GNU Lesser General Public License - http://www.gnu.org/licenses/lgpl.html

[11] Global Optimization for Neural Network Training - Yi Shang, Benjamin W. Wah

1996 University of Illinois

- 48 -

	Terminology
	1.Introduction
	2.OCR system
	3.Image preprocessing
	Adaptive threshold

	4.Clusterization
	Rough assumptions
	Finding character boundaries
	Finding correct character order
	Detecting spaces

	5.Feature extraction
	Implicit feature extraction
	Advantages
	Disadvantages

	Explicit feature extraction
	Advantages
	Disadvantages

	Algorithms
	Image region density
	Random line receptors
	Image region contour direction

	Quality measurement of feature extraction algorithms
	Quality of implemented algorithms
	Limitations

	6.Classification
	Statistical pattern classification
	Artificial neural network pattern classification
	Feed-forward neural network
	Neuron
	Learning
	Genetic learning algorithm
	Back-propagation learning algorithm
	Activation functions

	7.Character database
	8.Implementation
	Usage
	Storage
	UML diagrams
	Sequence diagram
	Class diagrams

	IDE
	Source code
	License
	Website

	9.Results

